

Interplay of magnetic and electric properties of ultracold molecular systems

Anna Dawid

University of Warsaw & ICFO, Barcelona

with Michał Tomza and Maciej Lewenstein

Ultracold molecules: state-of-the-art

Outline

Results – highlights: how electric and magnetic properties of molecules are intertwined

Take-home messages

Ultracold molecules: state-of-the-art

Outline

Results – highlights: how electric and magnetic properties of molecules are intertwined

Take-home messages

Many-body physics with ultracold atoms

Greiner et al. Nature, 415, 2002

Boll et al. Science, 353, 2016

Fukuhara et al. Nature, 502, 2013

J. Choi et al. Science, 352, 2016

Baier et al. Science, 352, 2016

Quantum control at a single-particle level

Nature **595**, 7866 (2021)

Replacing atoms with molecules

- Isotropic and short-range interactions
- Magnetic dipole moment
- Electronic structure, fine and hyperfine structure

- Anisotropic and long-range interactions
- Magnetic + electric dipole moment
- Electronic, fine and hyperfine + rotational, vibrational structure

Molecular promises

e.g. Herrera et al. Phys. Rev. Lett., 110, 223002, 2013

Góral, Santos & Lewenstein. Phys. Rev. Lett., 88, 170406, 2002

ī.2

1.1

0.5

0.6

0.7

0.8 0.9 aspect ratio L

1.1

0.6

0.7

0.8 0.9 aspect ratio L

Towards full control over molecules

• Bottom-up approach

Ni group: NaCs Wuhan group: RbRb

Science **360**, 900 (2018) Science **370**, 331 (2020)

Towards full control over molecules

• Laser cooling of molecules, then loading to traps

Doyle/Ketterle/Ni: CaF

Phys. Rev. Lett. **119**, 103201 (2017) Science **365**, 1156 (2019)

Quantum control at a single-particle level

Science 365, 1079 (2019)

Science **354**, 1024 (2016) Nature **561**,

79 (2018)

Ultracold molecules: state-of-the-art

Outline

Results – highlights: how electric and magnetic properties of molecules are intertwined

Take-home messages

two molecules in a 1D harmonic trap

few molecules with controlled geometries

highly magnetic and polar molecules

1D chain of molecules

two molecules in a 1D harmonic trap

prototypical example, on-site intermolecular interactions

highly magnetic and polar molecules

few molecules with controlled geometries

interplay of "electric" and magnetic momenta, frustration?

1D chain of molecules

topological phases?

few molecules with controlled geometries

highly magnetic and polar molecules

interplay of "electric" and magnetic momenta, frustration?

1D chain of molecules

topological phases?

two molecules in a 1D harmonic trap

prototypical example, on-site intermolecular interactions

- Harmonic trapping
- Molecules rotate as quantum rigid rotors
- Aniso- and isotropic interaction
- Electronic spin-rotation coupling
- External electric and magnetic field

Ground state with $J_{tot} \neq 0!$

Total rotational momentum of the ground state as a function of the isotropic (g₀) and anisotropic (g_{±1}) interaction strength

Dawid et al., Phys. Rev. A 97, 063618 (2018)

Total rotational angular momentum can be pumped into the system with external electric field!

$$d\mathcal{E} = 2.5 \,\hbar\omega$$

Mean values of the square of the total rotational angular momentum operator for selected eigenstates as a function of the isotropic (g₀) interaction strength

Dawid et al., Phys. Rev. A **97**, 063618 (2018)

Magnetization can be controlled with external fields!

Electric E vs. magnetic field B strength magnetization diagrams

Spin-rotation coupling:

quench of external electric field

observable:

z-projection of the **magnetic** spin angular momentum

Dawid & Tomza, Phys. Chem. Chem. Phys. **22**, 28140 (2020)

few molecules with controlled geometries

highly magnetic and polar molecules

interplay of "electric" and magnetic momenta, frustration?

two molecules

in a 1D harmonic trap

prototypical example,

intermolecular interactions

1D chain of molecules

topological phases?

preliminary!

Two highly polar and magnetic molecules

Ultracold molecules: state-of-the-art

Outline

Results - highlights: how electric and magnetic properties of molecules are intertwined

Take-home messages

Take-home messages

- Molecular electronic spin couples to the molecular rotation (~hundreds kHz)
- External electric field targets rotational structure, while magnetic field acts on spins
- We have a natural coupling of magnetic and electric properties in the molecules!

Thank you for your attention!

Code available at: http://doi.org/10.5281/zenodo.3985911

A. Dawid, M. Lewestein, M. Tomza. 2018. Phys. Rev. A **97**, 063618 (arXiv:1804.09168) A. Dawid, M. Tomza. 2020. Phys. Chem. Chem. Phys. **22**, 28140-28153 (arXiv:2010.11899)

$$\hat{H} = \hat{H}_{\text{trap}} + \hat{H}_{\text{mol}} + \hat{H}_{\text{field}} + \hat{H}_{\text{int}}$$

$$\hat{H}_{\text{trap}} = \sum_{i=1}^{2} \frac{\hat{p}_{i}^{2}}{2m} + \sum_{i=1}^{2} \frac{1}{2}m\omega z_{i}^{2}$$

$$\hat{H} = \hat{H}_{\text{trap}} + \hat{H}_{\text{mol}} + \hat{H}_{\text{field}} + \hat{H}_{\text{int}}$$

$$\hat{H}_{\text{rot}} = \sum_{i=1}^{2} B \, \hat{\mathbf{j}}_{i}^{2} \,,$$
$$\hat{H}_{\text{spin-rot}} = \sum_{i=1}^{2} \gamma \, \hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{j}}_{i} \,,$$

$$\hat{H} = \hat{H}_{\text{trap}} + \hat{H}_{\text{mol}} + \hat{H}_{\text{field}} + \hat{H}_{\text{int}}$$

$$\hat{H}_{\text{Stark}} = -\sum_{i=1}^{2} \hat{\mathbf{d}}_{i} \cdot \mathcal{E},$$
$$\hat{H}_{\text{Zeeman}} = 2\mu_{B} \sum_{i=1}^{2} \hat{\mathbf{s}}_{i} \cdot \mathcal{B}$$

$$\hat{H} = \hat{H}_{\text{trap}} + \hat{H}_{\text{mol}} + \hat{H}_{\text{field}} + \hat{H}_{\text{int}}$$

$$\hat{H}_{\rm iso} = \sum_{\alpha} g_0 \delta(z_1 - z_2) \hat{P}_0 ,$$
$$\hat{H}_{\rm aniso} = \sum_{\alpha \neq \alpha'} g_{\pm 1} \delta(z_1 - z_2) \hat{P}_{\pm 1}$$

with $\hat{P}_0 = |J, M, j_1, j_2\rangle \langle J, M, j_1, j_2|$ $\hat{P}_{\pm 1} = |J, M, j_1 \pm 1, j_2\rangle \langle J, M, j_1, j_2 \mp 1| + \text{H.c.}$