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Machines in phase classification 
– open problems

quantum many-body localization topological phases of matter

• disagreement of predicted critical 
exponents

• high sensitivity to hyperparameters 
describing the training process

• learning schemes trained on raw Monte Carlo 
configurations were found to be not effective

• pre-engineered features are often needed

mainly recovery of known results, but much cheaper

general problems with ML like…



Taken from: xkcd, A Webcomic of Romance, Sarcasm, Math, 
And Language, https://xkcd.com/1838/

People worry that the computers will get 
too smart and take over the world, but the 
real problem is that they’re too stupid and 
they’ve already taken over the world.

Pedro Domingos ”The Master Algorithm”

even small invisible changes or a different background 
context can completely derail predictions

high error rates for faces from minority groups 

the algorithm’s hiring and insurance decisions are
biased towards selecting men and white people



Some definitions

Interpretability
understanding what an ML model learns 
and how it makes its predictions

Reliability
trusting our ML model predictions
(uncertainty)

These two properties are closely 
intertwined.



Trade-off between complexity and interpretability

Decision Trees

Linear Models

K-Nearest Neighbours

Random Forest

Support Vector Machines

Neural 
Networks

interpretability

a
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and only when they have 
„human reasonable” sizes



Interpretation 
of ML in 
physics so far

o Decision trees, kernel methods
o Bottleneck analysis

Phys. Rev. Lett. 124, 010508 (2020)Phys. Rev. Research 2, 033499 (2020)

Nat. Commun. 12, 3905 (2021)
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Reliable and interpretable ML 
which stays as smart as 
without these qualities, 
independently of model 
architecture and training



Hessian-based toolbox

underspecification

uncertainty

similarity



„Minimum” 
of ML loss 
landscape 

𝐻𝑖𝑗 = อ
𝜕2ℒ(𝐷train, 𝜽)

𝜕𝜃𝑖𝜕𝜃𝑗
𝜽=෩𝜽

parameter θ space

(# of classes – 1): 𝜆𝑖 > 0

majority: 𝜆𝑖 ≈ 0

few: 𝜆𝑖 < 0



Outline 1. Interpreting an ML model

2. Reliability methods
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Hessian-based toolbox

o Influence functions
Koh & Liang
arXiv:1703.04730

o Resampling
Uncertainty
Estimation (RUE)
Schulam & Saria
arXiv:1901.00403

o Local Ensembles
(LEs)
Madras, Atwood, D'Amour
arXiv:1910.09573

underspecification

uncertainty

similarity



Leave-one-out training



Leave-one-out training

prohibitively expensive!



Analytical approximation for leave-one-out training

Influence functions

approximated change
in parameters due to 
removal of 𝑧r

Assumption: Hessian is positive-definite.
Generalization to non-convex models was done by Koh & Liang: arXiv:1703.04730, ICML 2017’s best paper



Geometrical interpretation

it is a scalar product of gradient of a 
test point and the gradient of a 
training point, corrected by local
curvature described by the Hessian

notion of similarity
in the model 

internal representation!



Detection additional phases

Detecting influential
data features

Anomaly detection
with influence functions

Three messages



Physical input data
1) simulated 2) experimental

spinless 1D Fermi-Hubbard model at half-filling topological Haldane model



Detection additional phases

Detecting influential
data features

Anomaly detection
with influence functions

Three messages





test point

nearest neighbor interaction / hopping amplitude

training points
from LL phase

training points
from CDW-I phase

A. Dawid et al, New J. Phys. 22 115001 (2020)



test point training points
from LL phase

training points
from CDW-I phase

It learns sth related
to order parameter!

nearest neighbor interaction / hopping amplitude A. Dawid et al, New J. Phys. 22 115001 (2020)
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test point

nearest neighbor interaction / nearest neighbor interaction

training points
from LL phase

training points
from BO 
and CDW-II phases

It sees additional phase!

A. Dawid et al, New J. Phys. 22 115001 (2020)



unsupervised approaches had troubles with distinghuishing
between two topological phases…

Unsupervised machine learning of topological phase 
transition from experimental data

N. Käming, A. Dawid et al., MLST 2 035037 (2021)
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Detection additional phases

Detecting influential
data features

Anomaly detection
with influence functions

Three messages



Micromotion phase

Same shaking frequency and shaking phase
different micromotion phases

The most influential points are 
localized around the same 

micromotion phase as test point

N. Käming, A. Dawid et al., MLST 2 035037 (2021)



Detection additional phases

Detecting influential
data features

Anomaly detection
with influence functions

Three messages



Global sign

+ label: e.g., 0 for LL, 1 for CDW-I

What machine gets

We usually fix the global sign to +
Choice of global sign changes nothing in physics



test point

nearest neighbor interaction / hopping amplitude

training points
from LL phase

training points
from CDW-I phase

global sign-imbalanced set
98% positive, 2% negative

global sign-balanced set
50% positive, 50% negative

Dawid et al., MLST 3, 015002 (2022)
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We can find outliers in the training data
(according to the model’s internal
similarity measure!)

Dawid et al., MLST 3, 015002 (2022)
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test point

nearest neighbor interaction / hopping amplitude

training points
from LL phase

training points
from CDW-I phase

global sign-imbalanced set
98% positive, 2% negative

global sign-balanced set
50% positive, 50% negative

What it means that ML 
model is invariant to 
some property?

Dawid et al., MLST 3, 015002 (2022)



Outline 1. Interpreting an ML model

2. Reliability methods



Hessian-based toolbox
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Resampling Uncertainty Estimation (RUE)

P. Schulam and S. Saria, Can you trust this prediction? Auditing pointwise reliability after learning, AISTATS 2019 - 22nd
Int. Conf. Artif. Intell. Stat. 89 (2020), arXiv:1901.00403v2.

studied ML model

training dataset, every
data point is taken once

b bootstrap samples

𝐷[1,1,1,1, … , 1,1]

𝐷1[0,1,3, … , 1,2]

𝐷2[1,4,0, … , 0,1]

𝐷𝑏[2,0,3, … , 1,0]

b predictions

variance





12-site FH model 14-site FH model

Dawid et al., MLST 3, 015002 (2022)



12-site FH model 14-site FH model

RUE indicates sharpness of the transition

Dawid et al., MLST 3, 015002 (2022)
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Local-Ensemble-based Extrapolation Score
(LEES)

D. Madras, J. Atwood, and A. D’Amour, Detecting Extrapolation with Local Ensembles. (2019) arXiv:1910.09573.

matrix of (M − m) Hessian eigenvectors
spanning a subspace of low curvature





Out-Of-Distribution (OOD) test points

random permutation of eigenvector elements



Local Ensemble-based Extrapolation Score

Dawid et al., MLST 3, 015002 (2022)



Local Ensemble-based Extrapolation Score

LEES indicates perfectly OOD test points!

Dawid et al., MLST 3, 015002 (2022)



Conclusions
under-
specification

uncertainty

similarity





More likely to learn physical features
than spurious correlations?
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If you want to know more…
/Shmoo137



Thank you for your attention!



Topological Haldane model 
realized via Floquet-driving of ultracold fermions (40K) in a honeycomb lattice

N. Käming, A. Dawid et al., MLST 2 035037 (2021)



Micromotion phase

shaking frequency = 7.4 Hz
shaking phase = 90˚
different micromotion phases

N. Käming, A. Dawid et al., MLST 2 035037 (2021)



OOD 
test 

points

RUE vs LEES


